Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
BMC Med ; 19(1): 281, 2021 11 17.
Article in English | MEDLINE | ID: covidwho-1523309

ABSTRACT

BACKGROUND: Model-based estimates of measles burden and the impact of measles-containing vaccine (MCV) are crucial for global health priority setting. Recently, evidence from systematic reviews and database analyses have improved our understanding of key determinants of MCV impact. We explore how representations of these determinants affect model-based estimation of vaccination impact in ten countries with the highest measles burden. METHODS: Using Dynamic Measles Immunisation Calculation Engine (DynaMICE), we modelled the effect of evidence updates for five determinants of MCV impact: case-fatality risk, contact patterns, age-dependent vaccine efficacy, the delivery of supplementary immunisation activities (SIAs) to zero-dose children, and the basic reproduction number. We assessed the incremental vaccination impact of the first (MCV1) and second (MCV2) doses of routine immunisation and SIAs, using metrics of total vaccine-averted cases, deaths, and disability-adjusted life years (DALYs) over 2000-2050. We also conducted a scenario capturing the effect of COVID-19 related disruptions on measles burden and vaccination impact. RESULTS: Incorporated with the updated data sources, DynaMICE projected 253 million measles cases, 3.8 million deaths and 233 million DALYs incurred over 2000-2050 in the ten high-burden countries when MCV1, MCV2, and SIA doses were implemented. Compared to no vaccination, MCV1 contributed to 66% reduction in cumulative measles cases, while MCV2 and SIAs reduced this further to 90%. Among the updated determinants, shifting from fixed to linearly-varying vaccine efficacy by age and from static to time-varying case-fatality risks had the biggest effect on MCV impact. While varying the basic reproduction number showed a limited effect, updates on the other four determinants together resulted in an overall reduction of vaccination impact by 0.58%, 26.2%, and 26.7% for cases, deaths, and DALYs averted, respectively. COVID-19 related disruptions to measles vaccination are not likely to change the influence of these determinants on MCV impact, but may lead to a 3% increase in cases over 2000-2050. CONCLUSIONS: Incorporating updated evidence particularly on vaccine efficacy and case-fatality risk reduces estimates of vaccination impact moderately, but its overall impact remains considerable. High MCV coverage through both routine immunisation and SIAs remains essential for achieving and maintaining low incidence in high measles burden settings.


Subject(s)
COVID-19 , Measles , Child , Humans , Immunization Programs , Infant , Measles/epidemiology , Measles/prevention & control , SARS-CoV-2 , Vaccination
2.
J Biomed Res ; 34(6): 422-430, 2020 Oct 30.
Article in English | MEDLINE | ID: covidwho-948180

ABSTRACT

The outbreak and rapid spread of COVID-19 has become a public health emergency of international concern. A number of studies have used modeling techniques and developed dynamic models to estimate the epidemiological parameters, explore and project the trends of the COVID-19, and assess the effects of intervention or control measures. We identified 63 studies and summarized the three aspects of these studies: epidemiological parameters estimation, trend prediction, and control measure evaluation. Despite the discrepancy between the predictions and the actuals, the dynamic model has made great contributions in the above three aspects. The most important role of dynamic models is exploring possibilities rather than making strong predictions about longer-term disease dynamics.

3.
Chaos Solitons Fractals ; 139: 110041, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-610152

ABSTRACT

The outbreak of COVID-19 has caused severe life and economic damage worldwide. Since the absence of medical resources or targeted therapeutics, systemic containment policies have been prioritized but some critics query what extent can they mitigate this pandemic. We construct a fine-grained transmission dynamics model to forecast the crucial information of public concern, therein using dynamical coefficients to quantify the impact of the implement schedule and intensity of the containment policies on the spread of epidemic. Statistical evidences show the comprehensive identification and quarantine policies eminently contributed to reduce casualties during the phase of a dramatic increase in diagnosed cases in Wuhan and postponing or weakening such policies would undoubtedly exacerbate the epidemic. Hence we suggest that governments should swiftly execute the forceful public health interventions in the initial stage until the pandemic is blocked.

SELECTION OF CITATIONS
SEARCH DETAIL